Majority Vote Based on Weak Classifiers
نویسندگان
چکیده
We present a two-class pattern recognition method through the majority vote which is based on weak classifiers. The weak classifiers are defined‘in terms of rectangular regions formed by the original training data. Tests on real and simulated data sets show that this classifier combination procedure can lead to a high accuracy.
منابع مشابه
Combined Weak Classifiers
To obtain classification systems with both good generalization performance and efficiency in space and time, we propose a learning method based on combinations of weak classifiers, where weak classifiers are linear classifiers (perceptrons) which can do a little better than making random guesses. A randomized algorithm is proposed to find the weak classifiers. They· are then combined through a ...
متن کاملCombinations of Weak Classifiers
To obtain classification systems with both good generalization performance and efficiency in space and time, we propose a learning method based on combinations of weak classifiers, where weak classifiers are linear classifiers (perceptrons) which can do a little better than making random guesses. A randomized algorithm is proposed to find the weak classifiers. They are then combined through a m...
متن کاملAutomatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers
Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...
متن کاملExamining the Relationship Between Majority Vote Accuracy and Diversity in Bagging and Boosting
Much current research is undertaken into combining classifiers to increase the classification accuracy. We show, by means of an enumerative example, how combining classifiers can lead to much greater or lesser accuracy than each individual classifier. Measures of diversity among the classifiers taken from the literature are shown to only exhibit a weak relationship with majority vote accuracy. ...
متن کاملExamining the Relationship Between Majority Vote Ac - curacy and Diversity in Bagging and
Much current research is undertaken into combining classifiers to increase the classification accuracy. We show, by means of an enumerative example, how combining classifiers can lead to much greater or lesser accuracy than each individual classifier. Measures of diversity among the classifiers taken from the literature are shown to only exhibit a weak relationship with majority vote accuracy. ...
متن کامل